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ABSTRACT

Experimentwise error rates can rapidly inflate when

researchers use multiple univariate tests.  Both (a) ANOVA post

hoc and (b) multivariate methods incorporate a correction for

experimentwise error.  Researchers ought to understand

experimentwise error if they are to understand (a) what post hoc

test really do and (b) an important rationale for multivariate

methods.
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A REVIEW OF EXPERIMENTWISE TYPE I ERROR:

IMPLICATIONS FOR UNIVARIATE POST HOC AND FOR MUTIVARIATE TESTING

Researchers are wary of making a Type I error.  In order to

guard against doing that, researchers set alpha to be small.

However, some researchers, focus only on “testwise” alpha, and

are unaware of the “experimentwise” alpha and the iimportance of

not inflating “experimentwise” Type I error rates.  This paper

reviews experimentwise Type I error.  The concept is

fundamentally important in two respects.  First, ANOVA post hoc

tests implicitly incorporate a correction for experiemtnwise

error; if this correction is not understood, the researcher does

not understand post hoc tests themselves.  Second, experimentwise

error concerns are one reason why multivariate tests are almost

always vital in educational research (Fish, 1988; Thompson,

1999), so researchers ought to understand experimentwise error if

they are to understand an important rationale for multivariate

methods.

Experimentwise Error

Researchers are cognizant of the possibility of rejecting a

null hypothesis (HO) even when the HO is true. This is called a

"testwise" Type I error.  Researchers set an alpha (α) level a

priori at a small near-zero value to protect against testwise

Type I errors.  If the alpha level is set at .01 of statistical

significance, one percent of the time the null will be falsely

rejected.  In this case, the null is rejected even though the

null may be true in the population.
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Most researchers are familiar with "testwise" alpha (αTW).

However, while "testwise" alpha refers to the probability of

making a Type I error for a given hypothesis test,

"experimentwise" (or "familywise" -- see Maxwell, 1992, p. 138)

error rate refers to the probability of having made a Type I

error anywhere within a set of hypothesis tests (Thompson, 1994).

"Experimentwise" error rate inflates when a number of hypotheses

are tested (e.g., two or more dependent variables) at the same

alpha level within a given study (Love, 1988).

"Experimentwise" error rate equals "testwise" error rate

when only one hypothesis is tested for a given group of people in

a study.  However, when more than one hypothesis is being tested

in a given study with only one sample, the two error rates may

not be equal (Thompson, 1994).  This occurs as Type I errors from

each individual tested hypothesis build off each other, causing a

highly inflated experimentwise error rate.  Huberty and Morris

(1989, p. 306) referred to this as "probability pyramiding."

Given the number of hypotheses being tested, the inflation of

experimentwise error rates can be quite serious, as emphasized by

Morrow and Frankiewicz (1979).

Experimentwise and testwise error rates are equal given the

presence of multiple hypothesis tests (e.g., two or more

dependent variables) in a single sample study only if the

hypotheses (or the dependent variables) are perfectly correlated

(or independent).  This is so by reason that, for example, when

one has perfectly correlated hypotheses, one actually is still

only testing a single hypothesis.  Therefore, it can be said that
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two factors effect the inflation of experimentwise Type I error:

(a) the number of hypotheses tested using a single sample of

data, and (b) the degree of correlation among the dependent

variables or the hypotheses tested (Thompson, 1994).

Bonferroni Formula for αEW

"Experimentwise" error rate inflation is at its maximum when

multiple dependent variables (e.g., multiple hypothesis tests) in

a single sample study are perfectly uncorrelated (Fish, 1988).

When this occurs, the experimentwise error (αEW) rate can be

calculated.  This is done using what is called the Bonferroni

inequality (Love, 1988):

αEW = 1 - (1 - αTW)
K
,

where k is the number of perfectly uncorrelated hypotheses or

variablesbeing tested at a given testwise alpha level (αTW).

For example, if four perfectly uncorrelated hypotheses (or

dependent variables) are tested using data from a single sample,

each at the αTW = .01 level of statistical significance, the

experimentwise Type I error rate will be:

αEW  = 1 - (1 - αTW)
K

    = 1 - (1 -  .01)
4

    = 1 - (  .99  )
4

    = 1 - (.99(.99)(.99)(.99))
    = 1 -    .960596
αEW = .039404.

Thus, for a study testing four perfectly uncorrelated

dependent variables, each at the αTW = .01 level of statistical

significance, the probability is .039404 (or 3.9404%) that one or

more null hypotheses will be incorrectly rejected within the
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study.  However, knowing this will not inform the researcher as

to which one or more of the statistically significant hypotheses

is a Type I error.  Table 1 provides an illustration of these

calculations for several αTW levels.  This table also illustrates

how quickly αEW can become inflated.

Witte (1985) explains the two error rates using an

intuitively appealing example involving a coin toss.  If the toss

of heads is equated with a Type I error, and if a coin is tossed

only once, then the probability of a head on the one toss (αTW),

and of at least one head within a set (αEW) consisting of one

toss, will both equal 50%.

If the coin is tossed three times, the "testwise"

probability of a head on each toss is still 50%, i.e., αTW = .50

(not .05).  The Bonferroni inequality is a literal fit to this

example situation (i.e., that is, a literal analogy), because the

coin's behavior on each flip is literally uncorrelated with the

coin's behavior on previous flips.  In other words, the coin does

not alter its behavior on any given flip as a result of its

behavior on any previous flip.

Thus, the "experimentwise" probability (αEW) that there will

be at least one head in the whole set of three flips will be

exactly:

αEW = 1 - (1 - αTW)
K

    = 1 - (1 -  .50)
3

    = 1 - (  .50  )
3

    = 1 - (.50(.50)(.50))
    = 1 - (  .2500 (.50))
    = 1 -    .125000
αEW = .875000.



Experimentwise Error  7

Table 2 illustrates these concepts more concretely.  In the

table are listed eight equally likely outcomes for sets of three

coin flips.  Of the eight sets of three flips, seven involve one

or more Type I error, defined in this example as a heads.

According to the Bonferroni inequality, 7/8 equals .875000, as

expected.

As stated earlier, the above example is a literal fit for

the Bonferroni inequality because the behavior of the coin on a

given flip is uncorrelated with the behavior of the coin on any

other flip.  The exact αEW can be determined using the Bonferroni

inequality formula if the hypotheses or variables are perfectly

uncorrelated.  This formula is not necessary when the hypotheses

are perfectly correlated because the αEW and the αTW equal each

other.

However, in most studies hypotheses are neither perfectly

uncorrelated nor perfectly correlated, and rather are partially

correlated.  For such studies, the actual experimentwise error

rate will range somewhere between the computed experimentwise

error rate (see above) and the testwise error rate, but may never

really be known (Fish, 1988; Love, 1988; Morrorw & Frankiewicz,

1979).

Also, the αEW inflation can be quite severe given the number

of hypotheses tested and the level of correlation.  Therefore,

the power to reject can be low (Olejnik, Li, Supattathum, &

Huberty, 1997).  In other words, with multiple univariate follow-

up tests at the original αTW level (e.g., .05), the αEW is

inflated to statistical significance even if no statistical
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significance is found anywhere in the study.  In order to

compensate for this, researchers apply a "correction."  This is

called the "Bonferroni correction."

Bonferroni Correction

The Bonferroni correction compensates for the inflation by

dividing the original αTW by the number of k hypotheses in the

study yielding a new αTW*(Maxwell, 1992; Thompson, 1994):

  αTW

αTW
* =  k  .

Each individual post hoc test then utilizes the αTW* in order to

maintain the αEW at an appropriate level.  Table 3 illustrates

how the Bonferroni correction is utilized in order to maintain

the αEW at an appropriate level.  However, this table also

illustrates how the use of the Bonferroni correction has the

potential for severe loss in power (Olejnik, Li, Supattathum, &

Huberty, 1997).

Post Hoc Analysis

After using an ANOVA omnibus test to analyze overall

differences in a multi-group study with more than two groups,

many researchers use “post hoc” (also called “a posteriori,”

“unplanned,” or “unfocused”) tests to determine which group means

differ for each set of pairs or combinations of groups.  All

comparisons/contrasts only test whether exactly two means are

equal.  There are two kinds of comparisons: simple and complex.

Although all contrasts test the equality of exactly two means,

simple and complex contrasts differ as regards the permissible

ways in which the two means are created. Put simply, "simple"
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contrasts compare the dependent variable means of two groups

using the existing levels of a way, without any combinations of

any levels. "Complex" contrasts, on the other hand, include all

possible "simple" contrasts, but also include means computed by

aggregating data across levels of the way.

For example, let's presume that a researcher did a one-way

three-level ANOVA in which there were 10 people in each of the

three groups of car owners: (a) Ford, (b) Nissan and (c) Rolls

Royce. The dependent variable might be satisfaction with one's

car. For this design three "simple" contrasts of mean levels of

satisfaction are possible:

MFORD (n = 10)  =  MNISSAN (n = 10);

MFORD (n = 10)  =  MROLLS (n = 10); and

MNISSAN (n = 10)  =  MROLLS (n = 10).

The "complex" contrasts include these simple contrasts, plus

the following three "uniquely complex" contrasts:

MFORD (n = 10)  =  MNISSAN or ROLLS (n = 20);

MNISSAN (n = 10)  =  MFORD or ROLLS (n = 20); and

MROLLS (n = 10)  =  MFORD or NISSAN (n = 20).

Table 4 illustrates these combinations for both three- and four-

level one-way ANOVA problems. As Table 4 makes clear, as the

number of levels gets larger, the number of simple contrasts gets

larger, but the number of complex contrasts gets exponentially

larger.

For each comparison, simple or complex, there are specific

post hoc tests used.  For simple comparisons the Tukey method,

also called the HSD (honestly significant difference) test, is
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often used.  For complex comparisons the Scheffé method is often

used (Hinkle, Wiersman, & Jurs, 1998).  Each of these method

utilizes an analogue to the Bonferroni correction in order to

maintain the αEW at the a priori α level.

Tukey

The Tukey method is likely the most recommended and used

procedure for controlling Type I error when making simple

comparisons.  The original Tukey method is based on Studentized

range statistics, which takes into account the number of means

being compared, adjusting for the total number of tests to make

all simple comparisons.  Later revisions of the Tukey method have

demonstrated its robustness to violations of normality and

homogeneity assumptions (Barnette, 1998).  The Tukey method is

also relatively insensitive to skewness.  The Tukey method is not

affected too much by many varied conditions.  The exception to

that is with the variability of the population means.  Keselman

(1976) found that the Tukey method is more powerful for the

maximum variability of the population means.  This is logical

given that under this condition the magnitude of simple

comparisons is largest.  However, with larger sample sizes, the

Tukey tends to lose relative power.

Scheffé

The Scheffé method is designed to analyze all possible

comparisons (Sato, 1996).  Therefore, the Scheffé method is used

for complex or multiple comparisons.  The Scheffé's infinite

intersectional nature is its greatest strength and its greatest
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weakness.  It is strong because it can analyze all possible

comparisons.  Klockars and Hancock (1998), however, assert that

researchers are not always interested in many of the comparisons

Scheffé makes.  Because it is designed to test so many multiple

comparisons, the Scheffé method is extremely conservative.  The

Scheffé methods suffers loss of power for some researchers

because it is so conservative (Sato, 1996).

Multivariate Methods

Multivariate methods are designed for multiple outcome

variables.  As Huberty and Morris (1989) noted, multivariate

methods ask, "Are there any overall effects present?"  This

questioning, or this philosophy, best honors the reality from

which data are collected.  That is, if data are collected from

samples upon which there are many influences, or variables, then

it is logical to use a statistical method that is designed to

take those variables into account simultaneously (Thompson,

1994).

Because multivariate methods are designed for multiple

outcome variables, multivariate methods require only one omnibus

test to determine if any differences exist.  This is in contrast

to univariate methods, which require many tests, thus increasing

the likelihood of making erroneous decisions.  For this reason

alone, multivariate methods should be used when multiple outcome

variables are of concern.
Summary

Although many researchers are familiar with "testwise"

alpha, "experimentwise" Type I error rates are also important,

and must be considered in many research situations. Testing
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multiple hypotheses with a single sample of data can radically

inflate the "experimentwise" Type I error rate.

The present paper has explained how this inflation can be

avoided in various research situations. First, it was explained

that ANOVA post hoc tests implicitly incorporate a hidden analog

of the "Bonferroni correction" to avoid Type I error rate

inflation. Second, it was noted that multivariate statistics are

frequently employed by researchers to control "experimentwise"

errors that would otherwise occur by conducting several ANOVA's

or regression analyses with a single sample of data.
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Table 1

Experimentwise Error Inflation Rates
                                    
           αTW    Tests    αEW    

1 - ( 1 - .01 ) **  1  =
1 - ( 0.99    ) **  1  =
1 -   0.99             =  0.01

1 - ( 1 - .001) **  10 =  0.009955
1 - ( 1 - .001) **  20 =  0.019811
1 - ( 1 - .001) **  30 =  0.029569
1 - ( 1 - .001) **  40 =  0.039230
1 - ( 1 - .001) **  50 =  0.048794

1 - ( 1 - .01 ) **  10 = 0.0561792
1 - ( 1 - .01 ) **  20 = 0.1820931
1 - ( 1 - .01 ) **  30 = 0.2602996
1 - ( 1 - .01 ) **  40 = 0.3310282
1 - ( 1 - .01 ) **  50 = 0.3949939

1 - ( 1 - .05 ) **  10 =  0.401263
1 - ( 1 - .05 ) **  20 =  0.641514
1 - ( 1 - .05 ) **  30 =  0.785361
1 - ( 1 - .05 ) **  40 =  0.871488
1 - ( 1 - .05 ) **  50 =  0.923055
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Table 2

All Possible Families of Outcomes

for a Fair Coin Flipped Three Times

Flip #
     1   2   3
 1.  T : T : T __
 2.  H : T : T   |  p of 1 or more H's (TW error analog)
 3.  T : H : T   |  in set of 3 Flips = 7/8 = 87.5%
 4.  T : T : H   |
 5.  H : H : T   |    or
 6.  H : T : H   |  where TW error analog = .50,
 7.  T : H : H   |  EW p = 1 - (1 - .5)3

 8.  H : H : H __|  = 1 - (.5)3
 = 1 - .125 = .875

p of H on
each Flip     50% 50% 50%
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Table 3

Experimentwise Error Rate Without and With

The Application of the Bonferroni Correction

Number of     1 - ( 1 - αTW)k =   αEW
Hypotheses                                    

No Bonferroni Correction

   10      1 - ( 1 - .05)10  =   .40126
   50     1 - ( 1 - .05)50  =   .92306
   100    1 - ( 1 - .05)100 =   .99408

Bonferroni Correction

   10 .05/10 =.00500    .04889
   50 .05/50 =.00100    .04879
   100 .05/100=.00050    .04878

                                                

Note. All original αTW for equations in
Table 3 are at the .05 level.
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Table 4
List of Simple and Complex Contrasts

for One-way k=3 and k=4 ANOVA

Design    Contrasts

k=3 levels

          Simple [3 (3 - 1)] / 2 = 6 / 2 = 3
              1  vs  2
              1  vs  3
              2  vs  3

          Complex 3 + 3 = 6

             Simple
                 1  vs  2
                 1  vs  3
                 2  vs  3

             Uniquely complex
                 1  vs  2,3
                 2  vs  1,3
                 3  vs  1,2

k=4 levels

          Simple [4 (4 -1)] / 2 = 12 / 2 = 6
              1  vs  2
              1  vs  3
              1  vs  4
              2  vs  3
              2  vs  4
              3  vs  4

          Complex 6 + 15 = 21

             Simple
                 1  vs  2
                 1  vs  3
                 1  vs  4
                 2  vs  3
                 2  vs  4
                 3  vs  4

             Uniquely complex
                 1, 2  vs  3
                 1, 2  vs  4
                 1, 3  vs  4
                 2, 1  vs  3
                 2, 1  vs  4
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                 2, 3  vs  4
                 3, 1  vs  3
                 3, 1  vs  4
                 3, 2  vs  4
                 4, 1  vs  2
                 4, 1  vs  3
                 4, 2  vs  3
                 1, 2  vs  3, 4
                 1, 3  vs  2, 4
                 1, 4  vs  2, 3


