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ABSTRACT
The basic processes in univariate statistics involve partitioning the sum of squares into two
components:  explained and within.  The present paper explains that the same partitioning
occurs in measurement analyses, i.e., splitting the sum of squares into reliable and unreliable
components.  In addition, it will be shown how the three types of error inherent in all
statistical analyses (i.e., sampling error, model specification error, and measurement error)
impact any analysis the researcher attempts. Also emphasized will be that tests are not
reliable, rather scores have varying degrees of reliability.

Basic Concepts in Classical Test Theory:  Relating Variance
Partitioning in Substantive Analyses to the Same Process in Measurement Analyses.

Variance in the dependent variable is the crux of all statistical analyses, hence, it is
the focus of all statistical analyses.  As an analogy, the variance observed in the dependent
variable can be viewed as making up one entire pie, e.g., as the variance increases, so would
the size of the pie--usually the size of the pie is equal to the sum of squares (SOS) total. 
Further, there are three different ways to interpret variance in the dependent variable, or
"knives" which can be used to cut the pie.  One knife will discriminate between which
ingredients were used, another will describe how much of which ingredient, and yet another
that will give an indication of how accurate the baking process is (measuring cups or
utensils used to make the pie actually are).  In statistical analyses, these knives are the
"who," "how," and "reliability" partitions of the observed variance, i.e., who accounts for
the variance, how the variance is accounted for by other variables, and the reliability of the
measurement.  Which knife we use depends on what question we want to answer.  Further,
there is error directly associated with each knife, i.e., sampling error, model specification
error, and measurement error respectively.

In a substantive context, variance is partitioned into "who" accounts for it and
"how" it is accounted for (via which predictor variable).  All substantive analyses are in
effect, regression, i.e., they all produce a y-hat and an error score.  The present paper will
show that the same model that is utilized in substantive analyses for partitioning the
observed variance into explained and unexplained components, is also used to partition the
variance in a measurement context into reliable and unreliable components.  Indeed, the
substantive and measurement contexts even have similarities at the sore level.

In a measurement context, partitioning focuses on reliability.  Measurement analyses
asks about the stability, equivalency, or consistency of the dependent variable score(s). 
That is, with what amount of certainty can the researcher believe that the obtained value or



score will replicate in the future, or that the obtained value or score is "true".  Reliability
generally refers to the degree to which test scores are free from measurement error (Sax,
1989).  Reliability always refers to the scores obtained on an instrument for a particular
group of examinees on a particular occasion--and not the instrument itself (Eason, 1991;
Rowley, 1976; Thompson, 1994).  Reliability also impacts effect sizes in substantive
research, as will be explained below.

Heuristic Examples of Substantive Analyses

Who accounts for the variance?
For answering the "who" question in substantive analyses, the variance observed is

partitioned by who (which participant) accounts for, and the amount of variance they
account for, in the total observed (or dependent variable) score.  If Marjie, Tommy, and
Diane all completed a hypothetical newly formed short version of the Behavior Assessment
for Children (BASC) (Reynolds & Kamphaus, 1994) to identify future school performance,
a "who" analysis could look something like Table 1 and Figure 1.

Table 1
Hypothetical data for a "who" analysis

Student Y Y-Mean y2

Marjie
Tommy
Diane

SUMS
MEAN

7
8
3

18
6

1
2
-3

0

1
4
9

14

Figure 1.  Venn diagram displaying partitioned variance reflecting a "who" analysis.

yi = Yi + YMean

M T T T D D D
T D D D D D D
Note.  M = Marjie, T = Tommy,

D = Diane.

Thus, the sum of squares (SOS) total is partitioned into its component parts
according to who accounts for how much of the total.  As with all analyses, error is a
factor.  In the formula, yi = Yi + YMean, there is no error component.  This is because the
type of error that impacts the who analysis is sampling error.  If the sample is not
representative of the population, then Figure 1 will not reflect reality.  For example, if the
sample is drawn from the tails of the population distribution, then the SOStotal will be
overestimated, leading to erroneous findings.  However, the sampling error would not effect
the SOS at the individual score level though. 



How the Variance is Accounted For
The other substantive "knife" cuts the variance into how it is made up.  In a "how"

analysis, a predictor variable is added to see how much variance that predictor variable
accounts for, or does not account for, in the total observed variance.  Assume that the small
sample utilized in Table 1 reflects the total population.  Assume also that this researcher
wants to predict that an age difference as little as a few months will make a difference on
the BASC=s identification of future school performance.  If all three students above were 7
years old at the time of administration, but Marjie was 1 month past 7 years old, Tommy
was 2 months past 7 years old, and Diane was 6 months past 7 years old, then number of
months could be a predictor variable, and the "how" substantive analysis could look like
Table 2 and Figure 2. 

Table 2
"How" analysis with predictor "X" being months of age

Student Y X x x2 Y X Yhat emod yhat yhat2 emod e2
mod

Majie
Tommy
Diane

SUMS
MEAN
SDx

COVxy

rxy

r2

7
8
3

18
6

2.65
-6.5
-.93
.86

1
2
6

9
3

-2
-1
-3

0

4
1
9

14

7
8
3

18
6

1
2
6

9
3

7.86
6.93
3.21

18

-.86
1.07
-.21

0

1.86
.93

-2.79

3.46
.86

7.78

12.10

-.86
1.07
-.21

.74
1.14

.04

1.90

Figure 2.  Venn diagram displaying partitioned variance reflecting a "how" analysis.

SOS yhat = 12.10
SOS emodel = 1.90

Error variance found in this model (yi = yhati + emodel) would be due to choosing the wrong predictor variable(s); thus,
model specification error--the predictor variable did not account for all the variance in the dependent variable, meaning
something else does.  In Table 2b, a regression model is utilized to partition the variance into explained and unexplained
components to determine how months of age explains, or does not explain, the dependent variable variance.
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Heuristic Examples of Measurement Analyses

As stated earlier, from a measurement perspective (the last of the three ways of partitioning
variance, depending on which questions the study wishes to answer), reliability is the question addressed.
 Will these results replicate?  This is important to know for many reasons.  For example, if someone=s IQ
fluctuated by 50 points each time they were tested, then those measurements on that IQ test give no
dependable information and are unreliable.  Using unreliable data such as that would be as inane as
attempting to predict a person=s IQ from their shoe size: it=s not possible, i.e., not stable, not equivalent,
not consistent, NOT RELIABLE.   

Taking the substantive equation yi = yhati + ei, we substitute T (true score) for yhat, and emeas

(measurement error) for e.  Thus, the equation becomes:  yi = Ti + emeas.  This equation is the true-score
theory=s premise:  that a person=s observed score is equal to that person=s true score + error.  True
score in this sense speaks to the "pure" indigenous trait the person holds--the true knowledge or ability
(Sax, 1989).  This value is a hypothetical value and is expected to yield consistent knowledge of
individual differences.  The true score is based on the premise that the person=s inherent ability is stable,
and over repeated testing the mean of those scores would be the true value.  Since infinite numbers of
repeated testing are not feasible, the obtained value + measurement error is substituted for the true score.
 A measurement which contained no error, would in fact measure only true ability, so in a sense by
measuring reliability, we are approximating true scores (Pedhazur & Schmelkin, 1991).  Since true scores
are not known, then the amount of measurement error cannot be known either.  Still, it is possible to
estimate the effect of measurement error in general (Sax, 1989).  To the extent that error is eliminated,
reliability will be high.  When measurement error variance is high, there must be a corresponding decrease
in reliability.  Similarly, when error variance is reduced, true and obtained scores will more closely
approximate each other, thereby increasing reliability (Sax, 1989).  In  classical test theory there are three
ways to measure reliability:  measurement error resulting through an error in test occasions (stability), or
an error in test forms (equivalence), or an error in items (internal consistency) (Crocker & Algina, 1986).
 We will explore these methods in the order given. 

Reliability as Stability
 The test-retest method has been utilized to measure the stability of scores over a period of time. 
If individuals respond consistently from one test to another, the correlation between the test scores will
be high.  Some researchers point to the squared correlation coefficient as a coefficient of stability.  The
time difference between tests impacts the stability coefficients.  If time intervals between tests are short,
the stability coefficients are likely to be high.  If the time period is longer, the stability coefficient is likely
to be lower (Pedhazur & Schmelkin, 1991).  This is one reason to speak about the reliability of
measurements and not the reliability of tests--the test is the same one given at a different point in time,
possibly yielding much different reliability coefficients as test intervals are varied!  A shorter interval
usually produces higher stability coefficients than a longer time interval.  To demonstrate how a
regression model can be employed in both a substantive and measurement context, the same heuristic
data set will be used in this example as in the previous example.  If the students reported on earlier were
administered the same test at a different point in time, a test-retest measure of reliability might look
something like Table 3 and Figure 3.  Let Y1 = the first administration and Y2 = the second administration
of the BASC.
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Table 3a-b
Test - rest method hypothetical BSAC scores

a.  Test-retest method on hypothetical
 BSAC scores

b.  Regression model for test-retest data
substituting T for Y and emeas for e

Student Y1 y1 y1
2 Y2 y2 Y2

2 T t t2 emeas e2
meas

Majie
Tommy
Diane

7
8
3

1
2
-3

1
4
9

5
7
4

-.33
1.67
-1.33

.11
2.79
1.77

5.52
8.5
4.03

-.49
2.49
1.98

.24
6.2
3.9

1.48
-.5
-1.0

2.19
.25
1.06

SUMS
MEAN
SD
COVy1y2

Ry1y2

r2

18
6

2.65
3.5
.86
.74

5.33
1.53

4.67 18.0
6.0

0 10.4 3.5

 As can be seen in Table 3b, the derivation of the true score and measurement error in a measurement
context (i.e., partitioning the variance into reliable versus unreliable components), is the same one
employed in a substantive context utilizing yhats and error scores to partition variance into explained
versus unexplained components.  The mechanics of the partitioning is the same, only the purposes of the
partitioning differ.  Following the premise of true-score theory, any error inherent in this design would be
due to the measurement process, and not changes in the individual themselves, because as stated earlier,
the "pure" indigenous trait the person holds, is consistently present.

Reliability as Equivalence
 These same methods can be used in the second measure of reliability - the equivalence, or parallel
forms of a test.  In this measure, two or more forms of a test are constructed and administered to the
same person at approximately the same time.  To eliminate practice or transfer effects, half of the
participants take one form followed by the other, and the sequence is reversed for the other half of
participants.  The correlation between the scores on the forms is a measure of their equivalence, and is
designated as a reliability index.  When squared, this reliability index is the reliability coefficient of the
measurement (Gronlund & Linn, 1990).  All reliability coefficients are squared concepts.  As stated
earlier, this example elucidates the fact that a reliability coefficient places a ceiling on effect sizes
(Rienhardt, in press).  From a reliability standpoint, the emeas is the part of the pie that cannot be eaten
(explained).  As can be seen in Figure 4, the emeas = 20%.  If we add a predictor variable that explained all
the remaining 80% of the pie, an effect size could not exceed that 80%.  In the worst case scenario, a
dependent variable is measured such that scores are perfectly unreliable, hence, the effect size will be "0",
and the results will not be statistically significant at any sample size, even an incredibly large one
(Reinhardt, in press).
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Figure 4  Example of a reliability coefficient between parallel forms of
an instrument,  placing a ceiling on effect size

rylyw= .80         r2
yx  # .80

Parallel forms are never perfectly correlated and the further from a correlation of 1 that they
differ, the greater the amount of unreliability.  However, because equivalence is determined by correlating
scores on tests designed to be parallel, the unreliability must come from differences in item sampling and
not, as in measures of stability, changes within the individuals themselves.  The exact same methods for
deriving T scores and measurement error utilized in the test-retest example are employed in the
equivalence check on reliability.

Reliability as Consistency 
The final technique of estimating reliability, is the internal consistency method. Because of

practicality, most teachers, psychologists and researchers will usually not administer the same test twice,
or develop an alternate form of an instrument.  In most cases researchers would like to estimate reliability
from one administration of an instrument.  This desire has led to measures of internal consistency,
historically, the split-half method.  In this method, one test or instrument is split in half and the 2 halves
are treated as alternate forms of the other, thereby obviating the need to construct more than one
instrument (Gronlund & Linn, 1990).   

Many different ways of splitting a test are available, but the most important consideration is that
the two halves be parallel.  If we use the same example employed previously, and split the items by way
of even (E) or odd numbers (O), the resulting scores would look like Table 4 and Figure 5. 

.20
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Table 4
Split-half method of hypothetical BASC scores

Student O o O2 E e e2

Majie
Tommy
Diane

3
3
1

.7

.7
-1.3

.49

.49
1.7

4
5
2

.33
1.3

-1.7

.11
1.8
2.8

SUMS
MEAN
SD
COVoe

roe

7
2.3

1.15
1.67

.94

2.7 11 4.7
3.7

1.53

Figure 5   Venn diagram partitioning variance into reliable versus
 unreliable components by way of consistency

When a correlation coefficient is computed on a split-half reliability measure, the resulting correlation is a
measure of the "agreeability" between one half of the instrument and the other.  When squared, such
correlations provide a measure of reliability for half an instrument, but not for the instrument as a whole. 
To estimate the reliability of the whole instrument from knowledge of the correlation between the halves,
the Spearman-Brown formula must be employed (Thorndike, Cunningham, Thorndike, & Hagen, 1991),
and is as follows:

2 X the correlations between the halves
1 + the correlations between the halves

From the example in Table 4:  2(.94)/1+.94 = 1.88/1.94 = .97, r2 = .94

Thus the actual correlation between the two halves of the test is .97, and when squared,   this is the
reliability of the measurement in terms of consistency (.94).   

Coefficient Alpha α (also named, "Cronbach=s alpha," (Cronbach, 1951)) is another measure of
internal consistency that is a squared concept, even though there is no squared sign in the symbol
designating α.  Theoretically, coefficient alpha is an estimate of the squared correlation expected between
two tests drawn at random from a pool of items similar to the items in the test under construction
(Pedhazur & Scmelkin, 1991). Coefficient alpha can be used as an index of internal consistency
conceptually exhibiting how item responses correlate with total test score, and employs the same concept
as the split-half measure of internal consistency, except that coefficient alpha pairs each item on the
instrument with all combinations of all other items.  Coefficient alpha is superior to the use of split-half
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measures, because as stated earlier, there are many different ways in which to split an instrument. 
Estimates associated with different splits for the same data may yield contradictory results (Sax, 1989). 
For example, a 4-item test has 3 splits, a 6-item test has 10 splits;  and for a test with 10 items, there are
126 different ways to split the test (Reinhardt, in press)!  So, as the number of items increase, so do the
number of possible splits.  The formula for coefficient alpha is as follows:

α = k/k-1(1-3σ2
i/σ2

x)
k is the number of items
3σ2

I = the sum of the variances of the items
σ2

x = the variance of the total score, or composite score

Where k is the number of items; 3σ2
I = the sum of the variances of the items; and σ2

x = the variance of the
total score, or composite score (Pedhazur & Schmelkin, 1991).  Using our data set of the children=s
scores on the BASC, coefficient alpha would look something like Table 5.

Table 5

Student Items
1 2 3 4 5 6 7 8   Score

Marjie 1 1 1 1 0 1 1 1 7
Tommy 1 1 1 1 1 1 1 1 8
Diane 0 0 1 0 0 1 0 1 3
         P .66 .66 100 .66 .33 100 .66 100 3 18
         Q .33 .33 0 .33 .66 0 .33 0
σ2 [Pxq] .21 .21 0 .21 .21 0 .21 0     1.05

The P values in Table 5 are derived by finding the ratio of scores of 1 on an item, to a score of 0. 
In item one this is  2/3 = .66.  The P value is also an index of item homogeneity, i.e., how alike the P
values are gives an indication as to how varied the scores are.  The item variance is found and summed (in
this example, item variance = 1.05).  The composite score is computed by finding the variance of the row
totals:  7+8+3=18.  In this case the composite variance = 7.02.  The numbers are then plugged into the
above formula giving a coefficient alpha:  8/7 (1-1.05/7.02) = .97.  Therefore, we have an estimate of the
reliability of the items and how they relate to each other, and to total test variance.  

Upon examination of the formula for coefficient alpha, we find that the total item variance is the
numerator, and total test or composite score, is the denominator.  The alpha coefficient is 1 minus this
ratio.  Therefore, it behooves the test constructor to maximize total test variance, while item variance is
minimized.  As can be seen from the following hypothetical data sets, the alpha coefficient can even be
negative (Reinhardt, in press).  This usually happens when item variance is larger than total test variance
(Arnold, 1996).  Table 6 and Figure 6 are employed to help make these concepts concrete.
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Table 6a, b, c
Probability Target Matrix Depicting Effects of Item and Composite Variance on Coefficient Alpha

a.  Min Test Variance, Max Item Variance, Homogeneous p
     Known Results for the population

Item

nI 1 2 3 4 5 6 7 Total
1 1 0 1 0 1 0 1 4
2 0 1 0 1 0 1 0 3
3 1 0 1 0 1 0 1 4
4 0 1 0 1 0 1 0 3
5 1 0 1 0 1 0 1 4
6 0 1 0 1 0 1 0 3
7 1 0 1 0 1 0 1 4
8 0 1 0 1 0 1 0 3
9 1 0 1 0 1 0 1 4
10 0 1 0 1 0 1 0 3
p .5 .5 .5 .5 .5 .5 .5
vark .25 .25 .25 .25 .25 .25 .25 .25
α   =   1.166667  x  (1 - (1.75 / .25) )  =  -7
Note.  Table adapted from "Factors Affecting Coefficient Alpha:  A Mini
Monte Carlo Study," by B. Reinhardt, (in press), in B. Thompson (Ed.),
Advances in social science methodology (Vol. 4).  Greenwich, CT:  JAI
Press.  Adapted with permission.

b.  Mod Test Var, Mod Item Var, Heterogeneous p
     Known Results for the Population

Item
ni 1 2 3 4 5 6 7 Total

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 1 1 1 1 4
7 0 0 0 0 1 1 1 3
8 0 0 0 1 1 1 1 4
9 0 0 0 0 1 1 1 3
10 0 0 0 1 1 1 1 4
p 0 0 0 .3 .5 .5 .5
vark 0 0 0 .21 .25 .25 .25 3.36
α =  1.16667 x  (1 - (.9600001 / 3.36))  = .8333333
Note.  Table adapted from "Factors Affecting Coefficient Alpha: 
A Mini Monte Carlo  Study," by B. Reinhardt, (in press), in B.
Thompson (Ed.), Advances in social science methodology (Vol.
4).  Greenwich, CT:  JAI Press.  Adapted with permission.



                                                                                                                     Variance Partitioning      10  

c.  Max Test Var, Max Item Var, Homogeneous p

Item
ni 1 2 3 4 5 6 7 Total

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 7
7 1 1 1 1 1 1 1 7
8 1 1 1 1 1 1 1 7
9 1 1 1 1 1 1 1 7
10 1 1 1 1 1 1 1 7
p .5 .5 .5 .5 .5 .5 .5
vark .25 .25 .25 .25 .25 .25 .25 12.25
α =  1.16667 x  (1 - (1.75 / 12.25))  = 1
Note.  Table adapted from "Factors Affecting Coefficient Alpha:  A
Mini Monte Carlo Study," by B. Reinhardt, (in press), in B.
Thompson (Ed.), Advances in social science methodology (Vol. 4). 
Greenwich, CT:  JAI Press.  Adapted with
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Figure 6.
Variance of Scores on Dichotomously-Scored Items With 10 Examinees

.25 x

.24 x x

.23

.22
I .21 x x
t .20
e .19
m .18

.17
V .16 x x
a .15
r .14
i .13
a .12
n .11
c .10
e .09 x x

.08

.07

.06

.05

.04

.03

.02

.01

.00 x x
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Item p Value

Note.  With 10 examinees completing a given item, there are 11 possible p values, each with an associated item variance.

Note.  Table adapted from "Factors Affecting Coefficient Alpha:  A Mini Monte Carlo
Study," by B. Reinhardt, (in press), in B. Thompson (Ed.), Advances in social science methodology (Vol. 4).  Greenwich, CT:  JAI Press. 
Adapted with permission.

From these results in this data set, it can be inferred that maximum total test variance is important to
maximize coefficient alpha, and that total test variance has more impact on alpha than item variance.
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Another measure of internal consistency for dichotomously-scored items is the KR-20 formula. 
The KR20 formula and the alpha coefficient formula are the same, except for the derivation of item
variance, as can be seen below:

KR-20 = k/k-1(1-3 pq/σ2
Total)

α = k/k-1 (1- 3σ2
I /σ2

Total)
But the formulas are algebraically equivalent, even though the ways for computing item variance seem
different.

Summary
In sum, the present paper has explained the three types of statistical analyses and the

corresponding error which accompanies each.  Two of the analyses are substantive ("who" and "how"),
and one involves a measurement perspective (reliability).  Further, the same method to analyze the data
(regression) has been utilized in both substantive and measurement  analyses to partition explained versus
unexplained variance, and reliable versus unreliable variance in the dependent variable, according to
which question the researcher wishes to answer.  The "classical" methods of estimating reliability have
been explained with an emphasis on coefficient alpha.



                                                                                                                     Variance Partitioning      13  

References

Arnold, M. E.  (1996, January).  Influences on and limitations of classical test theory reliability estimates.
  Paper presented at the annual meeting of the Southwest  Educational Research Association,
New Orleans, LA.

Crocker, L., & Algina, J.  (1986).  Introduction to classical and modern test theory.  New York:  Holt,
Rinehart, and Winston.

Cronbach, L. J.  (1951).  Coefficient alpha and the internal structure of tests.  Psychometrika, 16, 197-
334.

Eason, S.  (1991).  Why generalizabilty theory yields better results than classical test theory:  A primer
with concrete examples.  In B. Thompson (Ed.), Advances in educational research:  Substantive
findings, methodological developments (Vol. 1, pp. 83-89).  Greenwich, CT:  JAI Press.

Gronlund, N. E., & Linn, R. L.  (1990).  Measurement and evaluation in teaching (6th ed).  New York: 
Macmillan.

Pedhazur, E. J., & Schmelkin, L. P.  (1991).  Measurement, design and analysis:  An integrated approach.
 Hillsdale, NJ:  Erlbaum.

Reinhardt, B.  (in press).  Factors affecting coefficient alpha:  A mini Monte Carlo study.  In B.
Thompson (Ed.), Advances in social science methodology (Vol. 4).  Greenwich, CT:  JAI Press.

Reynolds, C. R., & Kamphaus, R. W.  (1992).  Behavior assessment for children (BASC):  Manual. 
Circle Pines, MN:  American Guidance Service.

Rowley, G. L.  (1976).  The reliability of observational measures.  American Educational Research
Journal, 13, 51-59.

Sax, G.  (1989).  Principles of educational and psychological measurements and evaluation (3rd ed.). 
Belmont, CA:  Wadsworth.

Thompson, B.  (1994).  Guidelines for authors.  Educational and Psychological Measurement, 54, 837-
847.

Thorndike, R. M., Cunningham, G. K., Thorndike, R. L., & Hagen, E. P.  (1991).

Measurement and evaluation in psychology and education (5th ed.).  New York: 

Macmillan.


